

미분기하 중간고사 (2003년 4월 23일)
 *표 문제는 제출하지 마시오.

1(20pts). Consider a curve $\alpha(t) = (t, \cosh t, 1+t)$ in \mathbb{R}^3 and real valued functions $f(x, y, z) = \ln(x^2 + y^2 + z^2)$, $g(x, y, z) = x - 4y + e^z$.

- a) Evaluate $\frac{d}{dt}(f \circ \alpha)$ at $t = 0$.
- b) Let $F = (f, g) : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ and let $\beta(t) = F(\alpha(t))$. Find $\beta'(0)$.

*2. Let $\alpha(t) = (a \cos t, a \sin t, bt)$.

- a) Reparametrize α by arclenth s .
- b) Find the Frenet frame, the curvature and the torsion of the curve.

3(10pts). Suppose that α is a curve in \mathbb{R}^3 with constant speed v . Prove that the acceleration of the curve is kv^2N , where k is the curvature and N is the normal vector field to the curve.

4(20pts). On \mathbb{R}^2 consider the frame field

$$E_1 = \cos \phi U_1 + \sin \phi U_2, \quad E_2 = -\sin \phi U_1 + \cos \phi U_2.$$

- a) Show that $\theta_1 = dr$, $\theta_2 = rd\phi$ are dual 1-forms, where $\phi = \tan^{-1} \frac{y}{x}$ and $r = \sqrt{x^2 + y^2}$.

- b) For $i, j = 1, 2$ find the 1-forms ω_{ij} that satisfies $\omega_{ij}(v) = \nabla_v E_i \circ E_j(P)$ for any tangent vector v to \mathbb{R}^2 at the point P .

- *c) What are the structural equations? Answer the same questions for the spherical frame.

5(20pts). Suppose that $\{E_1, E_2, E_3\}$ is a frame field on \mathbb{R}^3 and A is its attitude matrix. Let ω_{ij} , $i, j = 1, 2, 3$ be the connection form associated with the frame field, which is defined by

$$\omega_{ij}(v) = \nabla_v E_i \circ E_j(P)$$

for any tangent vector v to \mathbb{R}^3 at P .

- a) Show that $\omega_{ji} = -\omega_{ij}$.
- b) Show that the 3×3 matrix (ω_{ij}) is given by $(dA)(^t A)$.

6(20pts). If $F : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is a diffeomorphism such that F_* preserves dot product, show that F is an isometry.

7(10pts). Let a be a point of \mathbb{R}^3 such that $|a| = 1$. Prove that $C(p) = a \times p + (p \circ a)a$ defines an orthogonal transformation.

*8. If two unit-speed curves have the same curvature and the same torsion then they are congruent.

9(30pts). Let $\beta(t) = \frac{1}{2\sqrt{2}}(t + \sqrt{3} \sin t, 2 \cos t, \sqrt{3}t - \sin t)$ and $\alpha(t) = \frac{1}{\sqrt{2}}(\cos t, \sin t, -t)$.

- a) Show that α and β are congruent.
- b) Find an isometry F such that $F(\beta) = \alpha$.

총 130점 끝